Answer:
Option B
Explanation:
Instantaneous velocity of particle in circular motion is
$v=r\omega=at$ , (let v=at)
Then , $\omega=\frac{d\theta}{dt}=\frac{at}{r}$
So, $\int_{0}^{2 \pi n}\theta=\int_{0}^{t} \frac{at}{r} dt$
n= number of rounds=2(given)
$\Rightarrow$ $2\pi n=\frac{at^{2}}{2r}\Rightarrow t^{2}=\frac{4\pi nr}{a}$
Radial acceleration , $a_{r}=\frac{v^{2}}{r} = \frac{a^{2}t^{2}}{r}$
$\Rightarrow$ $a_{r}=\frac{a^{2}}{r} \times \frac{4 \pi nr}{a}$
$\Rightarrow$ $a_{r}=4 \pi na$
Tangential acceleration , $a_{t}=\frac{dv}{dt}=a$
$\therefore$ Total acceleration,
$a=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{a^{2}+(4\pi na)^{2}}$
$=a\sqrt{1+(4\pi n)^{2}}$
$=2\sqrt{1+64 \pi^{2}}$ [given a=2,n=2]